arship and university exchange programme (KJ) and the Callery Chemical Company for a generous gift of $\mathrm{B}_{10} \mathrm{H}_{14}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1502). Services for accessing these data are described at the back of the journal.

References

Cowie, J., Hamilton, E. J. M., Laurie, J. C. V. \& Welch, A. J. (1988). Acta Cryst. C44, 1648-1650.
Cowie, J., Hamilton, E. J. M., Laurie, J. C. V. \& Welch, A. J. (1990). J. Organomet. Chem. 394, 1-13.

Douek, N. L. \& Welch, A. J. (1993). J. Chem. Soc. Dalton Trans. pp. 1917-1925, and references therein.
Dunn, S., Rosair, G. M., Weller, A. S. \& Welch, A. J. (1998). In preparation.
Faller, J. W., Chodosh, D. F. \& Katahira, D. (1980). J. Organomet. Chem. 187, 227-231.
Hamilton, E. J. M. \& Welch, A. J. (1991). Polyhedron, 10, 471-476.
Mullica, D. F., Sappenfield, E. L., Stone, F. G. A. \& Wollam, S. F. (1994). Organometallics, 13, 157-166.

Plesek, J., Janousek, Z. \& Hermanek, S. (1978). Collect. Czech. Chem. Commun. 43, 2862-2868.
Rosair, G. M., Weller, A. S., Welch, A. J. \& Zahn, S. K. (1997). J. Organomet. Chem. 536, 229-308.
Sheldrick, G. M. (1994). SHELXTLPC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wade, K. (1976). Adv. Inorg. Chem. Radiochem. 18, 1-66.

Acta Cryst. (1998). C54, 217-219

Bis[di-2-pyridylmethanediolato(1-)N, O, N^{\prime}]cobalt(III) Perchlorate Trihydrate

Ming-Liang Tong, ${ }^{a}$ Guang Yang, ${ }^{a}$ Xiao-Ming Chen ${ }^{a}$ and Seik Weng NG ${ }^{b}$
${ }^{a}$ Department of Chemistry, Zhongshan University, Guangzhou 510275, People's Republic of China, and ${ }^{b}$ Institute of Postgraduate Studies and Research, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail: cedc03@zsu.edu.cn

(Received 27 August 1997; accepted 10 October 1997)

Abstract

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the metal atom is N, O, N^{\prime}-chelated by the two di-2pyridylmethanediolato anions with distorted octahedral $\mathrm{CoN}_{4} \mathrm{O}_{2}$ geometry. The $\mathrm{Co}-\mathrm{O}$ bonds [1.876(1) and 1.879 (1) A] are cis to each other.

Comment

Di-2-pyridyl ketone undergoes hydrolysis when reacted with transition metal ions to form polynuclear di-2pyridyl ketal complexes (Byers et al., 1985; Wang et al., 1986). The diol can be deprotonated and in complexes, the anion binds through the N, O and N^{\prime} atoms (Baggio et al., 1993; Deveson et al., 1996; Tangoulis et al., 1996). The title complex, (I), which has the Co atom in the +3 oxidation state, was obtained in an attempt to prepare a cobalt(II) complex containing di-2-pyridyl ketone and betaine ligands.

The complex consists of discrete monomeric cations, perchlorate anions and lattice water molecules. The $\mathrm{Co}^{\text {III }}$ atom is surrounded by four N atoms and two O atoms of the two tridentate ligands in a distorted octahedral $\mathrm{CoN} \mathrm{N}_{4} \mathrm{O}_{2}$ arrangement, with the greatest distortion from octahedral geometry being displayed by the angles N1-$\mathrm{Col}-\mathrm{N} 4$ and $\mathrm{O} 3-\mathrm{Col}-\mathrm{N} 4$. The $\mathrm{Co}-\mathrm{N}$ bond lengths [1.929 (1)-1.944 (1) \AA] are similar to those (1.994$2.098 \AA$) found in the di-2-pyridyl ketal complexes of nickel(II) and copper(II) reported by Wang et al. (1986). In these complexes, the pair of metal-oxygen bonds are in a trans alignment. On the other hand, the $\mathrm{Co}-\mathrm{O}$ bonds in the title complex are mutually cis; thus, the title complex presents an unusual mode of binding of this tridentate ligand to a metal centre.

The structure is consolidated by an extensive threedimensional hydrogen-bonding network which involves the lattice water molecules, the hydroxy groups of the

Fig. 1. ORTEPII (Johnson, 1976) plot of the title cation with 35% probability displacement ellipsoids. H atoms bonded to C atoms are not included.
organic ligands and the perchlorate anions. Pairs of adjacent cations are also bridged by pairs of hydrogen bonds from the O 4 hydroxy atoms to the O 3 atoms of the adjacent cation.

Experimental

Di-2-pyridyl ketone (1.0 mmol) was dissolved in water (2 ml) and the solution was mixed with an aqueous solution containing $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol})$, betaine $(1.0 \mathrm{mmol})$ and $\mathrm{NaClO}_{4}(1.0 \mathrm{mmol})$. The mixture was heated to 333 K and stirred briefly. Red blocks were formed after a few days. The $\mathrm{Co}^{\text {II }}$ starting reagent had been oxidized by air; a more common procedure for synthesizing $\mathrm{Co}^{\mathrm{III}}$ complexes involves oxidation by hydrogen peroxide (Chen et al., 1996).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$.-
Mo $K \alpha$ radiation
$3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=614.83$
Triclinic
$P \overline{1}$
$a=8.6342(3) \AA$
$b=11.6080(5) \AA$
$c=13.384(1) \AA$
$\alpha=91.988(5)^{\circ}$
$\beta=108.291$ (5) ${ }^{\circ}$
$\gamma=95.861(3)^{\circ}$
$V=1263.8(1) \AA^{3}$
$Z=2$
$D_{x}=1.616 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CADdiffractometer
ω scan
Absorption correction: ψ scan (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.682, T_{\text {max }}=0.736$
4760 measured reflections 4435 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.083$
$S=1.061$
4435 reflections
388 parameters

$$
\begin{aligned}
& \text { H atoms riding } \\
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0356 P)^{2}\right. \\
&\quad+0.98 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Col}-\mathrm{O} 1$	$1.879(1)$	$\mathrm{Col}-\mathrm{N} 4$	$1.944(1)$
$\mathrm{Col}-\mathrm{O} 3$	$1.876(1)$	$\mathrm{O}-\mathrm{C} 6$	$1.389(2)$
$\mathrm{Col}-\mathrm{N} 1$	$1.941(1)$	$\mathrm{O} 2-\mathrm{C} 6$	$1.389(2)$
$\mathrm{Col}-\mathrm{N} 2$	$1.929(1)$	$\mathrm{O} 3-\mathrm{Cl} 7$	$1.409(2)$
$\mathrm{Col}-\mathrm{N} 3$	$1.936(1)$	$\mathrm{O} 4-\mathrm{Cl} 17$	$1.376(2)$

$\mathrm{O} 1-\mathrm{Col-O}-\mathrm{O}$
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 2$
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 3$
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 4$
$\mathrm{O} 3-\mathrm{Col}-\mathrm{N} 1$
$\mathrm{O} 3-\mathrm{Col}-\mathrm{N} 2$
$\mathrm{O} 3-\mathrm{Col-N} 3$

$95.13(5)$	$\mathrm{O} 3-\mathrm{Col}-\mathrm{N} 4$	$81.40(5)$
$82.46(5)$	$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 2$	$89.74(5)$
$83.03(5)$	$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 3$	$96.45(6)$
$90.15(5)$	$\mathrm{N} 1-\mathrm{Col}-\mathrm{N} 4$	$101.02(6)$
$176.44(5)$	$\mathrm{N} 2-\mathrm{Col}-\mathrm{N} 3$	$170.13(6)$
$177.58(6)$	$\mathrm{N} 2-\mathrm{Col}-\mathrm{N} 4$	$96.15(6)$
$89.99(5)$	$\mathrm{N} 3-\mathrm{Col}-\mathrm{N} 4$	$90.22(6)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \cdot A$	D-H	H...A	D. . A	D-H. \cdot A
OIW-HIWA...OS ${ }^{\text {i }}$	0.90	2.09	2.960 (5)	164
OIW-HIWA.. $\mathrm{O7}^{\prime \prime}$	0.90	2.24	2.976 (7)	139
O1W-HIWB. . O3W	0.93	1.85	2.7669 (19)	170
O2-H2H...OIW	0.97	1.75	2.7060 (18)	167
O2W-H2WA...O4	0.96	1.94	2.8901 (18)	169
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{WB} \cdot \ldots \mathrm{O}^{\text {II }}$	0.94	2.02	2.929 (2)	163
$\mathrm{O} 4-\mathrm{H} 4 \mathrm{H} \cdots \mathrm{O}^{\text {ii }}$	0.83	1.81	2.6411 (14)	175
O3W-H3WA. ${ }^{\text {O }}{ }^{\text {iii }}$	0.92	2.29	3.199 (5)	172
O3W-H3WA . . $\mathrm{O}^{\text {'iii }}$	0.92	2.58	3.169 (9)	122
O3W-H3WA. . $\mathrm{O}^{\text {2 }}$ 'iii	0.92	2.07	2.982 (8)	170
O3W-H3WB. . O2 $W^{\text {iii }}$	0.90	1.94	2.834 (3)	173
Symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $1-x, 1-y, 1-z$; (iii) $x, y, z-1$.				

The O atoms in the perchlorate anion are disordered over two positions (70 and 30% occupancies) and were refined with geometric restraints. H atoms were located in a difference electron-density map and were allowed to ride on their parent atoms with fixed isotropic displacement parameters of $0.08 \AA^{2}$.
Data collection: CAD-4 VAX/PC (Enraf-Nonius, 1988). Cell refinement: CAD-4 VAXIPC. Data reduction: Xtal3.0 (Hall \& Stewart, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

We acknowledge financial support by the NSFC (29625102), Zhongshan University and the University of Malaya. TM-L thanks the Ma Can-an Foundation for the award of a scholarship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1036). Services for accessing these data are described at the back of the journal.

References

Baggio, E., Gonzalez, O., Garland, M. T., Manzur, J., Acuna, V., Atria, A. M., Spondie, F. \& Pena, O. (1993). J. Crystallogr. Spectrosc. Res. 23, 749-753.
Byers, P. K., Canty, A. J., Engelhardt, L. M., Patrick, J. M. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 981-986.

Chen, X.-M., Chen, H.-A., Wu, B.-M. \& Mak, T. C. W. (1996). Acta Cryst. C52, 2693-2695.
Deveson, A. C., Heath, S. L., Harding, C. J. \& Powell, A. K. (1996). J. Chem. Soc. Dalton Trans. pp. 3173-3178.

Enraf-Nonius (1988). CAD-4 VAXIPC Fortran System. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Universities of Western Australia, Australia, and Maryland, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tangoulis, V., Paschalidou, S., Bakalbassis, E. G., Perlepes, S. P., Raptopoulou, C. P. \& Terzis, A. (1996). J. Chem. Soc. Chem. Commun. pp. 1297-1298.
Wang, S.-L., Richardson, J. W., Briggs, S. J., Jacobson, R. A. \& Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67-72.

Acta Cryst. (1998). C54, 219-221
trans-Dichlorotri(cyclohexyl)arsenic(V)

Sofia Pascu, ${ }^{a}$ Lumintta Sllaghi-Dumitrescu, ${ }^{a}$ Alexander J. Blake, ${ }^{b}$ Wan-Sheung Li, ${ }^{b}$ Ionel $H_{a m u c}{ }^{a}$ and D. Bryan Sowerby ${ }^{b}$
${ }^{a}$ Department of Chemistry, Babes-Bolyai University, R-3400 Cluj-Napoca, Romania, and ${ }^{b}$ Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England. E-mail: a.j.blake@nottingham.ac.uk

(Received 30 September 1997; accepted 10 October 1997)

Abstract

The title molecule, $\left[\mathrm{AsCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$, has a distorted trigonal-bipyramidal geometry with three equatorial cyclohexyl groups and axial Cl atoms. The As-C distances [1.990 (2), 1.988 (2) and 1.981 (3) \AA] differ slightly, and the equatorial angles C-As-C are $117.35(10), 117.60(10)$ and $123.26(8)^{\circ}$. The angle subtended at arsenic by the axial Cl atoms is $178.60(2)^{\circ}$, but the chlorine separation distances [2.4957(7) and 2.3029 (7) \AA] differ substantially. The As atom lies out of the plane of the equatorial C atoms, suggesting a contribution from the ionic structure, [As(cyclo$\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}^{+} . \mathrm{Cl}^{-}$.

\section*{Comment}

Compounds of the type $E R_{3} X_{2}$ obtained by halogen (X_{2}) oxidation of triorgano derivatives of Group 15 elements, $E R_{3}$, are usually considered to have trigonal-bipyramidal structures and this geometry is found for the phosphorus compounds $\mathrm{PPh}_{3} \mathrm{~F}_{2}$ (Weller et al., 1991; Doxsee et al., 1992) and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~F}_{2}$ (Sheldrick, 1975). However, an alternative four coordinate 'spoke' structure, $R_{3} \mathrm{P} \cdots X$ X, is observed when $R=\mathrm{Ph}$ and $X=\mathrm{Br}$ (Bricklebank et al., 1992) or I (Godfrey et al., 1991), but the corresponding chloride, $\mathrm{PPh}_{3} \mathrm{Cl}_{2}$, belongs to a third structural type with a dimeric $\left[\mathrm{Ph}_{3} \mathrm{PCl}^{+} \ldots \mathrm{Cl}^{-} \ldots+\mathrm{Cl} \cdots \mathrm{PPh}_{3}\right] \mathrm{Cl}^{-}$ structure (Godfrey et al., 1996).

The first two structural types are represented when the central element is arsenic, i.e. trigonal-bipyramidal geometry for $\mathrm{AsPh}_{3} \mathrm{~F}_{2}$ (Augustine et al., 1975), $\mathrm{AsPh}_{3} \mathrm{Br}_{2}$ (Bricklebank et al., 1995), As(neopentyl) ${ }_{3} \mathrm{Br}_{2}$ (Pazik \& George, 1989), $\mathrm{AsMe}_{3} \mathrm{Cl}_{2}$ (Hursthouse \& Steer, 1971) and the four-coordinate spoke structure for $\mathrm{AsPh}_{3} \mathrm{I}_{2}$ (McAuliffe et al., 1987; Bricklebank et al., 1995). An ionic structure, $\left[\mathrm{AsMe}_{3} \mathrm{Br}^{+} . \mathrm{Br}^{-}\right.$, has been suggested for $\mathrm{AsMe}_{3} \mathrm{Br}_{2}$ (Hursthouse \& Steer, 1971).

Trigonal-bipyramidal structures appear to be the norm when the central atom is either antimony or bismuth, for example, $\mathrm{SbPh}_{3} X_{2}$, where $X=\mathrm{Cl}$ or Br (Begley \& Sowerby, 1993), and $\mathrm{Bi} R_{3} \mathrm{Cl}_{2}$, where $R=\mathrm{Ph}$ (Hawley \& Ferguson, 1968) or p-tolyl (Chen et al., 1993), but the geometry is slightly distorted towards the rectangularpyramidal alternative for $\mathrm{SbPh}_{3} \mathrm{I}_{2}$ (Bricklebank et al., 1994).

We have recently prepared tricyclohexylarsenic dichloride, (I), and because few five-coordinate arsenic(V) structures are known and there are a number of possible geometries for this stoichiometry, we have determined its crystal structure.

(I)

The X-ray structure (Fig. 1) establishes that the compound is trigonal bipyramidal, with organic groups in equatorial and Cl atoms in axial positions, rather than adopting the four-coordinate 'spoke' alternative.

Fig. 1. A view of a molecule of the title compound with the atom-numbering scheme. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as small spheres of arbitrary radii.

The geometry about arsenic (Table 1) is, however, distorted with two of the As-C separations effectively equal [1.990 (2) and 1.988 (2) \AA], while the third is shorter [1.981 (3) Å]; again two of the equatorial angles are effectively equal [117.4(1) and $\left.117.6(1)^{\circ}\right]$ with the third increased to $123.26(8)^{\circ}$. The equatorial angles

